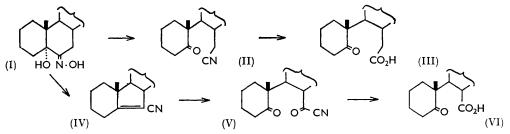
703. Aza-steroids. Part VI.¹ Beckmann Rearrangement of Some α -Hydroxy-ketoximes.

By C. W. SHOPPEE and S. K. ROY.

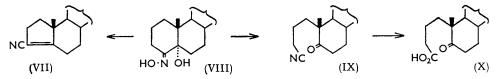
5-Hydroxy-5a-cholestan-4- and -6-one oximes, by Beckmann change with thionyl chloride at -20° , give nearly quantitative yields of ω -cyano-5ketones, which are converted by hydroxide or alkoxide ions into 3-cyano-Anorcholest-3-ene and 6-cyano-B-norcholest-5-ene, respectively.

In the preceding Part¹ we reported that Beckmann rearrangement of five steroid ketoximes (not otherwise substituted) gave the expected lactams which in only two of these cases were accompanied by the abnormal products, ω -cyano-olefins. The formation of ω -cyano-olefins (a) appears to parallel the ready production of aldehydes or ketones and cyanides from anti- α -hydroxy-oximes * (b) and of acylium cations and cyanides from anti- α -keto-oximes * (c) by " second-type " Beckmann change: 2-4

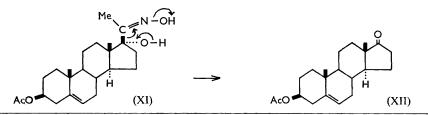

$$\begin{array}{ccccccccccc} & H \stackrel{\leftarrow}{\downarrow} CH_2 & CH_2 & H \stackrel{\leftarrow}{\downarrow} O & O & O \\ (a) & >C \stackrel{\leftarrow}{\downarrow} C \stackrel{\leftarrow}{\downarrow} C & - & > C & C & - \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

* syn- α -Hydroxy-oximes and syn- α -ketoximes yield aldehydes, ketones or acylium ions, and isocyanides; the stereoelectronic situation here prohibits concurrent electron transfers and requires consecutive Beckmann rearrangement with *trans*-interchange and "second-type" Beckmann change with cleavage in the resulting cation:

- ¹ Part V, preceding paper.
- ² Werner and Piguet, Ber., 1904, 37, 4295; Werner and Detscheff, Ber., 1905, 38, 69.
- ³ Blatt and Barnes, J. Amer. Chem. Soc., 1934, 56, 1148.
 ⁴ Ferris, J. Org. Chem., 1960, 25, 12.

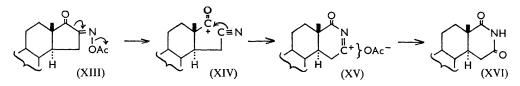

It seemed therefore of interest to examine the behaviour of some steroid α -hydroxyketoximes.

5-Hydroxy-5 α -cholestan-6-one oxime (I), on treatment with thionyl chloride at -20° or with hydrogen chloride in ether at 15°, gave a nearly quantitative yield of the ω -cyanoketone (II), v_{max} 2145 (C=N) and 1706 cm.⁻¹ (C=O), hydrolysed by hydrochloric-acetic acid to the known acid ⁵ (III). The hydroxy-oxime (I) in refluxing methanolic 4N-potassium hydroxide or ethanolic sodium ethoxide gave, probably through the keto-acid (III) by the Claisen reaction, the conjugated cyanide (IV), λ_{max} 227 m μ (log ϵ 4·1), ν_{max} 2210 (C=N),



1630 cm⁻¹ (C=C). The infrared spectrum of this product did not show hydrogen deformation frequencies in the 1000–660 cm. $^{-1}$ region, and the ditertiary character of the double bond is consistent with its resistance to hydrogenation and the resistance of the cyanogroup to hydrolysis under drastic conditions. The structure 6-cyano-B-norcholest-5-ene (IV) was proved by ozonolysis to the α -keto-cyanide (V), which on alkaline hydrolysis gave the known acid ⁶ (VI).

5-Hydroxy- 5α -cholestan-4-one oxime (VIII), on similar treatment with thionyl chloride or ethereal hydrogen chloride, gave a nearly quantitative yield of the ω -cyano-ketone (IX), hydrolysed by hydrochloric-acetic acid to the known acid ⁷ (X). The hydroxyoxime (VIII), on treatment with hydroxide or alkoxide ions, gave the $\alpha\beta$ -unsaturated cyanide (VII), λ_{max} 225 mµ (log ε 4·17), ν_{max} 2212 (C=N), 1635 cm.⁻¹ (C=C). The double bond therein could not be hydrogenated, and its ditertiary nature is shown by the absence of hydrogen deformation frequencies in the 1000–660 cm.⁻¹ region of the infrared spectrum.


It seems possible that the conversion of 3β -acetoxy- 17α -hydroxypregn-5-en-20-one oxime (XIV) by phosphoryl chloride-pyridine at 0° in 98% yield into androstenolone acetate⁸ (XII) may proceed by elimination of methyl cyanide rather than by normal rearrangement to the 17β -acetamido- 17α -alcohol and loss of acetamide.

⁵ Windaus and Resau, Ber., 1914, 47, 1229; Windaus, Ber., 1920, 53, 488; Lettré, Z. physiol. Chem., 1933, 218, 67; Dauben and Fonken, J. Amer. Chem. Soc., 1956, 78, 4736.

- Jacobs and Brownfield, J. Amer. Chem. Soc., 1960, 82, 4033. Lettré, Z. physiol. Chem., 1933, 221, 73.
- 7
- ⁸ Schmidt-Thomé, Annalen, 1957, 603, 43.

Finally, the rearrangement of 3β -acetoxy- 5α -androstane-16,17-dione 16-oxime acetate (XIII) by acetic anhydride-pyridine at 20° to the enol acetate ⁹ (XV) clearly takes place by "second-type" Beckmann change to the ω -cyano-acylium ion (XIV), which undergoes cyclisation to give (XV). The structure of the enol acetate (XV) is proved by alkaline hydrolysis to the imide (XVI).

EXPERIMENTAL

For general experimental directions, see $I_{..}$ 1958, 3458 and Part V.¹

5-Hydroxy- 5α -cholestan-6-one Oxime (I).—Cholest-5-ene (20 g.) was converted by treatment with peracetic acid and subsequent alkaline hydrolysis into 5α -cholestane-5,6 β -diol^{10,11} (13 g.). m. p. 120–121°, which was oxidised by N-bromosuccinimide to 5-hydroxy- 5α -cholestan-6one ^{10,11} (8·2 g.), m. p. 150–151°. The hydroxy-ketone (8 g.) was refluxed with hydroxylamine hydrochloride (12 g.) and sodium acetate trihydrate (16 g.) in ethanol for 4 hr., to give the oxime (I), having double m. p. 170°/190-192° after recrystallisation from ethanol [Found (after sublimation at 150°/0·1 mm.): C, 78·0; H, 11·35. C₂₇H₄₇NO₂ requires C, 77·7; H, **11·35%**].

Rearrangement of 5-Hydroxy-5a-cholestan-6-one Oxime (I) to 6-Cyano-5,6-secocholestan-5-one (II).—(a) The oxime (I) (800 mg.) was treated with thionyl chloride (10 c.c.) at -20° (carbon dioxide-acetone); the colourless solution was at once poured into an excess of 4N-potassium hydroxide at 20°, and the product extracted with ether. Crystallisation was induced by trituration with pentane, and recrystallisation from ethanol gave 5-oxo-5,6-secocholestano-6nitrile (II) (700 mg.), m. p. 96-97° [Found (after drying at 40°/0·3 mm. for 16 hr.): C, 81·3; H, 11·45; N, 3·45. C₂₇H₄₅NO requires C, 81·15; H, 11·35; N, 3·5%].

(b) The oxime (I), in ether, was treated with a stream of dry hydrogen chloride at 15° for 0.5 hr.; the solvent was removed in a vacuum and the crystalline residue recrystallised from ethanol, to give the nitrile, m. p. and mixed m. p. 96-97°.

Hydrolysis of the Nitrile (II): 5-Oxo-5,6-secocholestan-6-oic Acid (III).—The cyano-ketone (II) was refluxed with 10n-hydrochloric acid and acetic acid (1:1) for 4 hr., to afford, after working up in the usual way, 5-oxo-5,6-secocholestan-6-oic (III) as an oil, v_{max} 1710 cm.⁻¹, whose infrared spectrum was identical with that of a genuine specimen prepared ⁵ from cholest-5-ene.

6-Cyano-B-norcholest-5-ene (IV).—The oxime (I) (500 mg.) was refluxed with (a) a solution of sodium (3 g.) in ethanol (40 c.c.) for 3 hr. or (b) methanolic 4N-potassium hydroxide for 4 hr. The usual isolation procedure gave an oil, which was dissolved in ether and treated with dry hydrogen chloride. The precipitate was filtered off, and the filtrate evaporated to give a brown semi-solid product (300 mg.) which was chromatographed on aluminium oxide (10 g.) in hexane. Elution with benzene gave 6-cyano-B-norcholest-5-ene (IV) (250 mg.), m. p. 131° (from ethanol) [Found (after drying at 20°/0·1 mm. for 16 hr.): C, 85·1; H, 11·3; N, 3·55. C₂₇H₄₃N requires C, 85.0; H, 11.4; N, 3.6%].

Ozonolysis of 6-Cyano-B-norcholest-5-ene (IV): 5-Oxo-5,7-seco-6-norcholestan-7-oic Acid (VI). -6-Cyano-B-norcholest-5-ene (100 mg.) in chloroform (30 c.c.) was treated with ozonised oxygen at -10° for 2 hr. After removal of chloroform at $30-40^{\circ}/10$ mm., the semi-solid product was refluxed with methanolic 2n-potassium hydroxide (20 c.c.) for 2 hr. After the usual working up, the acid fraction formed an oil which crystallised when moistened with pentane and kept at 0° for a week. Recrystallisation from pentane gave 5-oxo-5,7-seco-6norcholestan-7-oic acid, m. p. 182°, mixed m. p. 180-182° (lit., 6 188°). The infrared spectrum was identical with that of a synthetic specimen prepared by the procedure of Jacobs and Brownfield.6

Reich, Walker, and Collins, J. Org. Chem., 1951, 16, 1753.
 Jones, Lewis, Shoppee, and Summers, J., 1955, 2876.

⁹ Heard, Ryan, and Balker, J. Org. Chem., 1959, 24, 172.

5-Hydroxy-5α-cholestan-4-one Oxime (VIII).—Cholest-4-ene [m. p. 81.5° , lit.,¹² 82— 83.5° (purified ¹² through the 4β,5α-dibromide, m. p. 117°)] (18 g.) was converted by treatment with peracetic acid and subsequent alkaline hydrolysis into 5α-cholestane-4β,5-diol ¹¹ (10 g.), m. p. 171—172°, which was oxidised with N-bromosuccinimide to 5-hydroxy-5α-cholestan-4-one ¹¹ (9.5 g.), m. p. 159°, $[\alpha]_{\rm D}$ +54° (c 0.9). The hydroxy-ketone (8 g.) was refluxed with hydroxylamine hydrochloride (12 g.) and sodium acetate trihydrate (16 g.) in ethanol for 4 hr. to furnish the oxime (VIII), double m. p. 190°/212—214°, after recrystallisation from acetone [Found (after drying at 80°/0.2 mm. for 12 hr.): C, 78.0; H, 11.15. C₂₇H₄₇NO₂ requires C, 77.7; H, 11.35%].

Rearrangement of 5-Hydroxy-5 α -cholestan-4-one Oxime (VIII) to 5-Oxo-4,5-secocholestano-6nitrile (IX).—(a) The oxime (320 mg.) was treated with thionyl chloride (5 c.c.) at -20° ; the colourless solution was at once poured into an excess of 4N-potassium hydroxide at 20°. The usual extraction procedure gave an oil, which crystallised when moistened with pentane; recrystallisation from ethanol gave the *nitrile* (IX) (300 mg.), m. p. 66—68°, v_{max} . 2145, 1706 cm.⁻¹ [Found (after drying at 20°/0.3 mm. for 16 hr.): C, 81.0; H, 11.35. C₂₇H₄₅NO requires C, 81.15; H, 11.35%].

(b) The oxime, on treatment with dry hydrogen chloride in ether at 15° for 0.5 hr., evaporation of the solution in a vacuum, and recrystallisation of the product from ethanol gave the nitrile (IX), m. p. and mixed m. p. $66-68^{\circ}$.

5-Oxo-4,5-secocholestan-4-oic Acid (X).—The cyano-ketone (IX) was refluxed with 10nhydrochloric acid-acetic acid (1:1) to furnish, after the usual working up, 5-oxo-4,5-secocholestan-4-oic acid '(X) as an oil, v_{max} 1710 cm.⁻¹. The infrared spectrum was identical with that of a genuine specimen prepared by ozonolysis of pure cholest-4-ene, m. p. 81.5°.

3-Cyano-A-norcholest-3-ene (VII).—The oxime (VIII) (500 mg.) was refluxed with a solution of sodium (3 g.) in ethanol (40 c.c.) for 3 hr. The product, dissolved in ether, was treated with dry hydrogen chloride; the insoluble base hydrochloride was filtered off, the filtrate evaporated, and the product chromatographed on aluminium oxide (10 g.) in hexane. Elution with benzene gave 3-cyano-A-norcholest-3-ene (VII) (250 mg.), m. p. 90—92° [Found (after drying at 40°/0.3 mm. for 6 hr.): C, 85.35; H, 11.7. $C_{27}H_{43}N$ requires C, 85.0; H, 11.35%].

One of us (S. K. R.) acknowledges study-leave granted by the University of Behar and Ranchi, India, and the award of a Henry Bertie and Florence Mabel Gritton Research Scholarship by the University of Sydney.

Department of Organic Chemistry, The University of Sydney, Sydney, N.S.W., Australia. [Received, December 28th, 1962.]

¹² Bladon, Fabian, Henbest, Koch, and Wood, J., 1951, 2406.